Knowledge Discovery in Large Spatial Databases: Focusing Techniques for Efficient Class Identification

نویسندگان

  • Martin Ester
  • Hans-Peter Kriegel
  • Xiaowei Xu
چکیده

Both, the number and the size of spatial databases are rapidly growing because of the large amount of data obtained from satellite images, X-ray crystallography or other scientific equipment. Therefore, automated knowledge discovery becomes more and more important in spatial databases. So far, most of the methods for knowledge discovery in databases (KDD) have been based on relational database systems. In this paper, we address the task of class identification in spatial databases using clustering techniques. We put special emphasis on the integration of the discovery methods with the DB interface, which is crucial for the efficiency of KDD on large databases. The key to this integration is the use of a well-known spatial access method, the R*-tree. The focusing component of a KDD system determines which parts of the database are relevant for the knowledge discovery task. We present several strategies for focusing: selecting representatives from a spatial database, focusing on the relevant clusters and retrieving all objects of a given cluster. We have applied the proposed techniques to real data from a large protein database used for predicting protein-protein docking. A performance evaluation on this database indicates that clustering on large spatial databases can be performed, both, efficiently and effectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Database Interface for Clustering in Large Spatial Databases

Both the number and the size of spatial databases are rapidly growing because of the large amount of data obtained from satellite images, X-ray crystallography or other scientific equipment. Therefore, automated knowledge discovery becomes more and more important in spatial databases. So far, most of the methods for knowledge discovery in databases (KDD) have been based on relational database s...

متن کامل

A Database Interface for Clustering in Large Spatial Databases1

Both the number and the size of spatial databases are rapidly growing because of the large amount of data obtained from satellite images, X-ray crystallography or other scientific equipment. Therefore, automated knowledge discovery becomes more and more important in spatial databases. So far, most of the methods for knowledge discovery in databases (KDD) have been based on relational database s...

متن کامل

Discovery of General Knowledge in Large Spatial Databases

Extraction of interesting and general knowledge from large spatial databases is an important task in the development of spatial dataand knowledge-base systems. In this paper, we investigate knowledge discovery in spatial databases and develop a generalization-based knowledge discovery mechanism which integrates attribute-oriented induction on nonspatial data and spatial merge and generalization...

متن کامل

Spatial data mining and geographic knowledge discovery - An introduction

Voluminous geographic data have been, and continue to be, collected with modern data acquisition techniques such as global positioning systems (GPS), high-resolution remote sensing, location-aware services and surveys, and internet-based volunteered geographic information. There is an urgent need for effective and efficient methods to extract unknown and unexpected information from spatial data...

متن کامل

Knowledge Discovery in Spatial Databases

Both, the number and the size of spatial databases, such as geographic or medical databases, are rapidly growing because of the large amount of data obtained from satellite images, computer tomography or other scientific equipment. Knowledge discovery in databases (KDD) is the process of discovering valid, novel and potentially useful patterns from large databases. Typical tasks for knowledge d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995